Package: poolABC 1.0.0.9000

João Carvalho

poolABC: Approximate Bayesian Computation with Pooled Sequencing Data

Provides functions to simulate Pool-seq data under models of demographic formation and to import Pool-seq data from real populations. Implements two ABC algorithms for performing parameter estimation and model selection using Pool-seq data. Cross-validation can also be performed to assess the accuracy of ABC estimates and model choice. Carvalho et al., (2022) <doi:10.1111/1755-0998.13834>.

Authors:João Carvalho [aut, cre, cph], Vítor Sousa [aut]

poolABC_1.0.0.9000.tar.gz
poolABC_1.0.0.9000.zip(r-4.5)poolABC_1.0.0.9000.zip(r-4.4)poolABC_1.0.0.9000.zip(r-4.3)
poolABC_1.0.0.9000.tgz(r-4.4-any)poolABC_1.0.0.9000.tgz(r-4.3-any)
poolABC_1.0.0.9000.tar.gz(r-4.5-noble)poolABC_1.0.0.9000.tar.gz(r-4.4-noble)
poolABC_1.0.0.9000.tgz(r-4.4-emscripten)poolABC_1.0.0.9000.tgz(r-4.3-emscripten)
poolABC.pdf |poolABC.html
poolABC/json (API)
NEWS

# Install 'poolABC' in R:
install.packages('poolABC', repos = c('https://vsousa.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/joao-mcarvalho/poolabc/issues

Datasets:
  • limits - Matrix of prior limits
  • myparams - Matrix of simulated parameter values
  • params - Matrix of simulated parameter values
  • rc1 - Data frame with an example of observed data
  • rc2 - Data frame with an example of observed data
  • sumstats - Matrix of summary statistics computed from simulated data

On CRAN:

3.70 score 1 stars 3 scripts 119 downloads 72 exports 46 dependencies

Last updated 1 years agofrom:549505edc9. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winNOTEOct 27 2024
R-4.5-linuxNOTEOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:abbaABCbabaBTmatrixcheckCoveragecheckMajorcheckMissingcleanDatacmd2popscmdParallelcmdSinglecreateHeadercreateParamsD.statD.statPoolerror_modelSelerrorABCeuclideanexclusiveExpected_HetfilterDatafixedforceLocusgetFstgetmodeHet_BetweenimportContigsimportDataindex.rejABCindexSNPsinverse_transmeanExpected_Hetmergepostmode_locfitmodelSelectmultipleABCnormaliseorganize.poststatorganizeSCRMpairFSTpickWindowsplot_errorplot_errorABCplot_mselplot_paramplot_Posteriorsplot_statsplot_weightedpoolSimpoolStatspopsFSTpoststatprepareDataprepareFilepriorsMatrixregABCrejABCremove_quantileReadsremove_realReadsremoveVarrunSCRMscaled.migrationscaledPriorsharedsim_modelSelsimulationABCsingleABCstatsContigsummary_modelSelectTmatrixtranfweighted_stats

Dependencies:clicodacodetoolscolorspacedoParallelfansifarverforeachggplot2gluegtableisobanditeratorslabelinglatticelifecyclelocfitmagrittrMASSMatrixMatrixModelsmcmcMCMCpackMetricsMetricsWeightedmgcvmunsellnlmennetpillarpkgconfigpoolHelperquantregR6RColorBrewerRcpprlangscalesscrmSparseMsurvivaltibbleutf8vctrsviridisLitewithr

poolABC

Rendered frompoolABC.Rmdusingknitr::rmarkdownon Oct 27 2024.

Last update: 2023-08-09
Started: 2023-07-06

Readme and manuals

Help Manual

Help pageTopics
Parameter estimation with Approximate Bayesian Computation with several targetsABC
Import and clean a single file containing data in 'popoolation2' formatcleanData
Create SCRM command line for a model with two populationscmd2pops
Create SCRM command line for a parallel origin scenariocmdParallel
Create SCRM command line for a single origin scenariocmdSingle
Create a header for a _rc file of popoolation2createHeader
Draw parameters from the priorscreateParams
Compute error in model selection with Approximate Bayesian Computationerror_modelSel
Force the simulations to contain the required number of lociforceLocus
Calculate the mode of a distributiongetmode
Import multiple files containing data in PoPoolation2 formatimportContigs
Parameter estimation with Approximate Bayesian Computation using rejection sampling and recording just the index of accepted simulationsindex.rejABC
Matrix of prior limitslimits
Merge posterior distributionsmergepost
Compute mode of a locfit objectmode_locfit
Perform model selection with Approximate Bayesian ComputationmodelSelect
Parameter estimation with Approximate Bayesian Computation for multiple targetsmultipleABC
Matrix of simulated parameter valuesmyparams
Matrix of simulated parameter valuesparams
Prediction error plots for ABC using a listplot_errorABC
Plot model misclassificationplot_msel
Plot the density estimation of a given parameterplot_param
Plot multiple posterior distributionsplot_Posteriors
Plot the fit of a summary statistic to the targetplot_stats
Plot the density estimation of a given parameterplot_weighted
Simulation of Pooled DNA sequencingpoolSim
Compute summary statistics from Pooled DNA sequencingpoolStats
Calculate point estimates from the posterior distributionpoststat
Organize information by contig - for multiple data filesprepareData
Organize information by contigs - for a single data fileprepareFile
Construct matrix of prior limitspriorsMatrix
Data frame with an example of observed datarc1
Data frame with an example of observed datarc2
Parameter estimation with Approximate Bayesian Computation using local linear regressionregABC
Parameter estimation with Approximate Bayesian Computation using rejection samplingrejABC
Remove sites using quantiles of the depth of coverageremove_quantileReads
Remove sites, according to their coverage, from real dataremove_realReads
Run scrm and obtain genotypesrunSCRM
Compute scaled migration ratesscaled.migration
Compute scaled migration rate limitsscaledPrior
Leave-one-out cross validation of model selectionsim_modelSel
Perform an Approximate Bayesian Computation simulation studysimulationABC
Parameter estimation with Approximate Bayesian Computation for a single targetsingleABC
Posterior model probabilitiessummary_modelSelect
Matrix of summary statistics computed from simulated datasumstats